
Stability of mixed convectmn flow 
K. Muralidhar*l and F. A. Kulacki*:l: 
Hydrodynamic and thermal stability of a confined stratified flow is analyzed by means of 
linearized perturbation theory. A numerical procedure, which has generality with respect to 
boundary conditions, Reynolds number, Prandtl number, mean velocity, and temperature 
profiles, is described to solve the Orr-Sommerfeld problem altered by buoyancy. Two test 
cases--the study of transition of plane Poisseulle flow affected by stable and unstable 
stratification and the stability of flow generated by a wall heater with and without 
superimposed flow--have been solvea, demonstrating the power and generality of the 
technique. A wide range of mixed convection problems has also been covered in this paper, 
and interesting Prandtl number effects have been observed. In the case of stratified 
Poisseulle flow, increasing Prandtl number significantly reduces the influence of buoyancy. 
Moreover, for stability of flow over a wall heater, higher values of Prandtl number strongly 
amplify the effect of prescribed flow. 

Koywords: linear stability; mixed convection; modified Orr-Sommerfeld equations," 
orthonormalization; Eigen values; critical Reynolds number; critical Rayleigh number 

Introduction 

The hydrodynamic and thermal stability of stratified, confined 
laminar flows has been considered in this study. These include 
the case of nonisothermal plane Poisseulle flow weakly affected 
by buoyancy and the other extreme case of buoyant flow from a 
horizontal wall heater, modified by a superimposed stream. 
Stability analysis has been carried out within the framework of 
linear perturbation theory. A numerical method is used to 
determine the most destabilizing eigenvalue whose imaginary 
part represents the disturbance amplification and that does not 
have computational difficulty when the Reynolds and Rayleigh 
numbers are large. Moreover, the method is a general one with 
respect to Prandtl number, mean velocity, temperature profiles, 
and boundary conditions. The scope of the physical problems 
dealt with is intended to demonstrate the usefulness of this 
technique for a wide range of mixed convection problems. 

Stability of stratified channel flows has been considered 
earlier by Gage and Reid. ~ Their work involves a complete 
analytical solution under restrictive conditions such as unity 
Prandtl number. Platten and Legros 2 have considered stability 
under a variety of circumstances, including channel flow and 
free and mixed convection problems. They further described 
experiments performed to demonstrate and locate the point of 
transition. Hwang and Cheng a have studied the problem of 
onset of longitudinal vortices in fully developed channel flow 
heated from below. Kamotani, Ostrach, and Miao 4 have 
performed experiments to measure augmentation in heat 
transfer in the poststability regime for flow in a horizontal 
channel whose lower wall is heated. Gebhart s has provided a 
comprehensive review of stability of free convective, external 
flows. 

The objective of this work is twofold. First, a versatile 
numerical technique with a wide range of applicability has been 
used. Second, attention has been focused on certain interesting 
and yet unsolved problems in the area of stratified flows; two 
broad cases have been considered: 

1. Stable and unstable stratified plane Poisseulle flow 
2. Onset of convection and stability of free and mixed 

convective flow over a wall heater 

In both cases, Prandtl number effects have also been studied. 
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F o r m u l a t i o n  

The equations governing the growth of disturbances small 
enough to justify linearization can be obtained by perturbing the 
momentum and energy equations of the instantaneous flow 
field. The onset of instability studied here is marked by the 
appearance of transverse rolls. The specific form of the 
fluctuations is taken as periodic, as required by normal mode 
analysis. The stability of plane Poisseulle flow is investigated 
using two-dimensional perturbations, whereas for the wall 
heater problem, both two- and three-dimensional perturbations 
lead to the same form of governing equations. For the 
hydrodynamic stability problem, Squire's theorem guarantees 
that two-dimensional disturbances would be more destabilizing 
than three-dimensional ones. Its extension to buoyancy-affected 
problems is assumed here. For a horizontal configuration of the 
channel, this leads to the following system of equations (Platten 
and Legros2). Two different Reynolds numbers (Re1 and R%) 
have been defined for cases 1 and 2 to conform to existing 
practice in literature. 

Case 1 : plane Poisseulle flow 

L4~ = Rib0 (1) 

L20=0'~ (2) 
where 

L4 = (i~ Re1 )- 1 (D2 _ 62)2 _ (U - c)(D 2 - 62)-  (y 

and 

L2 = (i= Re1 Pr)- 1(D2 - ¢2)_ ( U -  c) 

In Equation 1, Rib is the bulk Richardson number of mean flow 
(independent of Re~) and is a prescribed quantity. The complex 
wave speed, c, is given as 

C = C r + i c  i (3) 
Written in this form, the smallest of Re1 that makes c i > 0 is the 
critical value for the problem and a criterion for instability. 

Case 2: flow over a horizontal walt heater 

L4~ = Ra 620 (4) 

LaO = O' c ~ (5) 
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where 

L4 = D 4 -  [i~(Re2 U - c) + 2~2]D 2 

-I-i0~3(Re2 U-c)+~4-i~ Re 2 ~y] 

and 

L2 _ D 2 _ (~2 _ iotc Pr + iu Pr Re 2 U) 

In Equations 4 and 5, U is prescribed, and the smallest Ra that 
makes q > 0 is the critical value of transition. 

In deriving Equations 1-5, x derivatives of the base flow 
velocity fields are assumed small in comparison to the y 
derivatives only to the extent that they isolate the stability 
equations in x and y directions. Further, stability of a given y- 
dependent mean flow is considered, assuming the flow system 
would break clown first because of severe gradients in this 
direction. This can be expected to be valid for the case of a 
horizontal infinite channel. 

For  both of these cases, the following homogeneous 
boundary conditions are assumed to hold on the solid 
boundaries. These correspond to zero velocities and fixed mean 
temperatures on the walls of the channel. 

~b = D~b = 0 0 = 0 (6) 

Specification of base f low and temperature 

The mean flow that undergoes transition has been taken as two- 
dimensional, steady, and incompressible, except for the density 
dependence on temperature in the body force terms. 

Case 1: plane Poisseulle flow (Figure la) 

Fully developed laminar flow (plane Poisseulle flow) in a 
horizontal channel is considered here. Superimposed on the 
velocity field is a thermal field, as obtained from the mixing of 
two parts of equal velocity streams at initially different 
temperatures. This leads to a thermal mixing layer at their 
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Figure I (a) Configuration of stratified plane Poisseulle flow; (b) 
fully developed flow over a wall heater of finite length 

interface, along the center of the channel, whose thickness grows 
with the location along the channel length. Typical profiles of 
mean velocity and temperature are shown in Figure l(a). The 
following corresponding formulas have been used: 

U = 1 - ( 2 y -  1)2 (7) 

/~'=0 0 <y0 .4  

= +5.0 0 .4<y 0.6 (8) 

= 0  0 . 6 < y l . 0  

N o t a t i o n  

at, b/ Complex column vectors 
b~ Complex conjugate of bi 
B Transfer matrix 
c Eigenvalues, s -  t 
Cr, ci Real and imaginary parts of c 
/5 Complex determinant 
F1, F2 Real and imaginary parts of I3 
0 Gravitational acceleration, m/s 2 
h Channel height, m~_so  characteristic length) 
i Imaginary unit, x / -  1 
L2, L a Differential operators 

Pr Prandtl number, - -  
c<f 

p Number of orthonormalizations 

@A Th 3 
Ra Rayleigh number of base flow, - -  

V~f 

Um~xh 
Re 1 Reynolds number, 2v 

Umh 
Re 2 Reynolds number, - -  

V 

gflA Th 
Ri b Bulk Richardson number, 

t Time, s 
T Disturbance temperature, °K 

Mean temperature, °K 
AT Bulk temperature difference, 7"H -- ~'C 
u, v Disturbance speed in x and y directions 
U, V Velocity of base flow in x and y directions, m/s 
x, y Dimensionless physical coordinates 
~t Wave number 
~tf Thermal diffusivity of the fluid, m2/s 
fl Volumetric expansion coefficient, °K-1 

Amplitude function of ~k 

d~ D~ 
dy 

0 Amplitude function of T 

T -  Tc 
Temperature field of base flow, 7"H- Tc 

d0 
dy 

v Kinematic viscosity, m2/s 
~, Disturbance steam function 

dV ~U 
Vorticity of mean flow field, c3x ~y 

Subscripts 
c Critical value 
max Maximum value 
m Mean value 
H Hot stream or boundary 
C Cold stream or boundary 
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Figure 2 Streamlines in one half a horizontal channel with lower 
wall  partially heated (Re2 = O, Pr = 1, Ra = 10 ,000 )  
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Figure 3 Isotherms in one half a horizontal channel wi th lower wall  
partially heated (Re2=O, P r= l ,  Ra=lO,O00) 
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Figure 4 Base velocity profile in laminar buoyant convection in a 
horizontal channel arising from a partially heated lower wall  

Flow fields like these are encountered in air-conditioning 
applications, where fresh outside air is mixed with cooler 
recycled air. The positive sign refers to stable stratification of 
density, and the negative sign, to the unstable case. Buoyancy 
is included to the extent that fluctuations introduced in the 
channel are promoted in an unstable density configuration, or 
damped in other cases. This, in effect, is the case of weak mixed 
convection, where the mean flow field is affected by 
gravitational effects only to a minor extent. 

Case 2: f l o w  over  a wa l l  heater  (F igure  1 b) 

F l ow  due to  a heater located on the lower  wal l  o f  a hor i zon ta l  
channel and flow over it are studied here. Flow systems like 
these are encountered in cooling of electronic equipment and are 
characterized by a strong interaction between the velocity and 
temperature distribution. This, forced flow distorting a 
buoyancy-driven flow field, is the other extreme and is classified 
as the case of strong mixed convection. 

The velocity and thermal fields generated by a wall heater 
located in an infinite, horizontal channel have been obtained by 
solving the unsteady Navier-Stokes and energy equations by 
finite differences (Roache 6 and Ngnyen et al.7). The numerical 
scheme uses the second upwind procedure, and steady state is 
obtained by marching in time. Figures 2 and 3 show the roll 
pattern and isotherms when Ra = 104 and the lower wall of the 
channel is partially heated. The heater length is four times the 
channel height. For the free convection problem, it is sufficient 

to consider only half the heater length by virtue of the available 
symmetry. For the mixed convection problem, with prescribed 
fully developed flow, the full heater length has been included. 
Figures 4 and 5 show base velocity and temperature profiles 
when Pr= 1, Re2 =0, and Ra= 104, and Figures 6 and 7 show 
the same when Re2 = 20. Similar results have been obtained for 
Pr= 10. 
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Figure 5 Base temperature profile in laminar buoyant convection in 
a horizontal channel arising from a partially heated lower wall  
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Figure 6 Base velocity profile in mixed convection in a horizontal 
channel wi th a partially heated lower wal l  
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Figure 7 Base temperature profile in mixed convection in a 
horizontal channel with a partially heated lower wall  
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S o l u t i o n  p r o c e d u r e  

Equations 1, 2, 4, 5, and 6 constitute an eigenvalue problem, 
with a, Re, Ra, and Ri b as parameters and c as the eigenvahes 
that provide nontrivial solutions to the stability problem. The 
solution scheme adapted to the present problem is called the 
direct integration method (DaveyS). The robust nature of this 
class of techniques has been demonstrated rigorously by 
Meyer. 9 By straightforward Runge-Kutta integration, one can 
establish the following matrix relation: 

q 

Dc~ 
D2~ 
D3c~ 

0 
DO 

- x x x- 
X X X 

X X X 

o2¢ I 
D3~[ 

DO 

(9) 

y = 2  y = 0  

The complex 6 x 6 transfer matrix can be obtained columnwise 
by solving six initial value problems with the vector 
(~b, D~b . . . . .  D0)T=o assuming values (1, 0 . . . . .  0) and so on to 
(0, 0 . . . . .  1). The boundary conditions are then imposed on this 
matrix equation. For a nontrivial solution, the determinant D 
formed by the X's must vanish. For a given ~ and Re (or Ra), the 
quantity c is adjusted so that this determinant is close to zero, 
that is, c is the root of the determinant. Root finding can then be 
done by a variety of schemes (for example, Muller's method). 
Alternatively, one can prescribe ~ and ci = 0 and solve for two 
roots, Re (or Ra) and Cr- This can be carried out by a Newton- 
Raphson scheme. This approach was found to be quite efficient 
and will be described later. 

Orr-Sommerfeld problems exhibit matrix ill conditioning 
when cast in the form of Equation 9. This is due to widely 
varying growth rates of the independent solutions, which leads 
to inaccurate evaluation of the ill-formed determinant through 
round-off errors. The numerical scheme used here eliminates 
this problem by an orthonormalization technique. Instead of 
integrating all the way to the next wall, a series of subtransfer 
matrices is formed by integration from y = 0  to Y=Yl, Y~ to Y2, 
and so on. If these transfer matrices are denoted at 
Bx, B2, . . . ,  Bp, the overall transfer matrix is 

B=BnBn-  t . "  Bl (10) 

To avoid i l l  conditioning, the matrix obtained after every 
mult ipl ication has columns 3, 4, and 6 orthogonalized with 
respect to one another and all columns normalized after that. 
The definition of orthogonal columns used here is as follows. I f  
T,?= 1 a,bi= 0, then a and b are orthogonal normal. This follows 
from the unusual inner product (a,b)=Y?= 1 aht rather than 
T,?= 11 a,~i which makes c, the wave speed, an analytic function 
o f / )  from standard root f inding techniques to apply. 

To determine the roots of the matr ix in Equation 9, c~ is set to 
zero, and = is specified asa parameter: Then, Cr and Re (at the 
critical value) are the unknown roots to be obtained from the 
simultaneous equations, 

F1 = real(/)) = 0 (1 la) 

F2 - imaginary(/)) = 0 (11 b) 

where F~ and F 2 are implicity functions of c r and Re. 
Corrections required over the initially assumed values of Cr and 
Re are given by 

ARe = ( F 2  ~cr -F l  ~cr OF2"~F_ l 

/ aF2 ~F1 \ 1 
Acr=~Fl ~e--F2 ~ e ) F -  (12) 
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and 

F=~FI ~F2 ~FI ~F 2 
~Re ~c r ~ ~Re 

The derivatives in Equation 12 are ea~ly computed by finite 
differences. 

R e s u l t s  a n d  d i s c u s s i o n  

A step size of 0.001 has been used for the fourth-order Runge- 
Kutta integration, and p has been taken as 8. Size convergency 
for smaller step sizes and larger p has been observed in all 
calculations. Prandtl numbers ranging from 0.1 to 10 have been 
used in this study, but the method of obtaining eigenvalues is 
general enough for any finite Prandtl number, as well as a 
variety of temperature profiles. Values of critical Reynolds 
number and Rayleigh number represent convergence to the 
second decimal place, whereas those of cr are correct to the 
fourth decimal place. The critical Reynolds of unstratified plane 
Poisseulle flow calculated in this work (Rel¢ = 5762.7) agrees 
well with the value obtained by Thomas 1° (Re~c=5780). 
Further validation of the numerical scheme is described later in 
the context of thermal stability. 

Case 1 

Stability results for stratified Poisseulle flow are given in Figures 
8-11. For stable stratification, the critical Reynolds number 
increases as Rib increases. This is particularly so when Pr~< l, 
whereas for Pr = 10, the critical Reynolds number is virtually 
unchanged for 0<  Rib < 0.1. The flow thus becomes increasingly 
stable because of the increased resistance of a high Prandtl 
number fluid to sustain fluctuations in the presence of a 
buoyancy field. As viscous effects start to predominate over 
diffusive ones (Pr> 1), these increasingly govern the growth of 
fluctuations, and the stability characteristics tend to the case of 
zero buoyancy. The temperature profile considered here cannot 
lead to complete laminarization (as observed in the work of 
Gage and Reid 1) because Ri is locally zero outside the thermal 
mixing layer. The stable region of the flow field lies outside the 
stability envelope and can be seen in the familiar plot or Re 
versus the wave number ~ (Figure 9). As Rib is increased to 0.1, 
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Figure 8 Effect of bulk Richardson number on critical Reynolds 
number--stable stratification 
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Figure 10 Effect of  bulk Richardson number on crit ical Reynolds 
number---unstable strat i f icat ion 

the two branches of the envelope collapse, and this can be 
interpreted as increased stability of flow. 

When the flow is unstably stratified in density, it is possible to 
lower the critical Reynolds number in weak mixed convection 
problems if it is assumed vortex rolls due to thermal instability 
do not appear first. This can certainly be anticipated for the 
values of Reynolds number used in this work. Figure 10 shows 
the drop in the values of Retc as a function of bulk Richardson 
number for.various values of Pr. This result corresponds to an 
imposed temperature profile, as in Figure l(a), but in an 
unstable configuration (Equation 8). As seen earlier, lower 

values of Pr experience a stronger influence of buoyancy. For 
values of Pr greater than 10, this influence is insignificant. 
Figure 11 shows the stability envelopes of buoyancy-affected 
flow, where the reduced stability of flow for higher values of Rib 
is evident from its expanding interior region. 

C a s e  2 

Figure 12 shows the results for onset of convection for flow over 
a horizontal wall heater. The velocity field is chosen as fully 
developed, and the temperature grad!ent is unity across the 
channel height. This can be physically realized in a wind tunnel 
with a linearly heated grid. The critical Rayleigh number marks 
the point of thermal instability for both flow and no-flow 
conditions. Table 1 shows detailed results for this case, and the 
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Table  I Effect of Re2 on Rac at onset of convection 

Pr Re2 Rac ~c Cr 

1 0 1707.8 3.12 0 
1 6.67 1766.8 3.12 7.799 
1 16.67 2082.8 3.16 19.46 
7 0 1707.8 3.12 0 
7 2 1793.6 3.08 2.59 
7 4 2030.5 3.01 5.1738 
7 8.33 2871.1 2.95 10.8715 
7 13.33 4178.1 2.99 17.525 
7 16.67 5276.0 3.0 21.93 

Table  2 Stability results for free and mixed convection flow 
over a wall heater 

Re2 Pr x Rac =c Cr 

0 1 1 3.386 E + 05 8.5 - 9.6862 
0 1 2.4 3.325 E + 05 9.72 + 0.05346 

20 1 1 5.59 E + 05 8.75 19.893 
20 1 2.4 2.646 E + 05 10.175 19.394 

0 10 1 4.248 E + 05 10.0 - 1.588 
0 10 2.4 3.37 E + 05 9.74 - 0.03629 

20 10 1 c~ 
20 10 2.4 co 
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to mix vigorously by means of turbulent motion. In an air-  
conditioning system, this could mean mechanical failure arising 
from severe thermal stresses related to the difference in 
temperatures. On the other hand, when the stratification 
improves mixing, it simultaneously increases pressure drop or 
reduces flow rates for a given rating of the pumping unit. 

The second flow configuration considered here (Figure lb) 
has applications in cooling of electronic equipment. As the 
surface temperature of a panel is allowed to increase, the 
performance of the electronic system is adversely affected, 
though at certain critical points (Rac~ 3 x 10s), the complex flow 
pattern results in elevated heat transfer rates. By a proper choice 
of fluid properties, this surface temperature can be made small 
enough not to deteriorate system behavior. If this cannot be 
realized, the alternative is to use superimposed flow over the 
heated surfaces. Results obtained in this paper show that 
enhancement due to gravity effects are possible for air (Pr~ I), 
whereas they are negligible for fluids like water (Pr~ 10). 

The use of linear stability theory restricts this study to the 
region very close to transition of a flow state. As the flow pattern 
departs from this point, the approximation of small 
perturbation is no longer valid. Hence for any practical 
application, stability results also have to be supplemented by 
solving full momentum and transport equations. When these 
equations are solved numerically, the stability analysis, which 
identifies the possibility of transition, can prove to be 
invaluable. 

values for Fr = 7 agree closely with those given by Flatten and 
Legros. 2 For Re2 =0, Cr is calculated as zero, which is the 
"exchange of stabilities" principle. It can also be seen that the 
numerical scheme correctly brings out the absence of a 
dependence of Rac on Pr when Re2 = 0. However, for Re2 > 0, 
higher values of Pr strongly amplify the effects of prescribed flow 
by delaying the point of transition. 

When the Rayleigh number associated with the heated surface 
is greater than the critical value, a base flow field is established 
that could undergo a series of discrete transitions toward 
turbulence. Figures 4-7 show the base flow velocity and 
temperature profiles obtained by a finite difference scheme for 
Ra = 104 and Pr = 1. Table 2 gives the critical Rayleigh numbers 
at which these profiles would allow the growth of small periodic 
fluctuations. It can be seen that, for Re2=0 and Pr=  1, the 
disturbance wave velocity could be either in the positive or 
negative direction, depending on the location along the heater 
length. However, when Re2 = 20, the waves are convected along 
the mean flow. For Re2 = 0, the critical Rayleigh number is 
relatively unaltered from x =  1 to x =  2.4 and is about 3.3 x los. 
For Re2 = 20, there is continuous decrease in Ra~ as x increases, 
since in this case, the thickness of the thermal boundary layer 
increases in the same direction. For the Reynolds number used 
here, this reduction occurs even beyond the value obtained for 
purely free convective flow. This result needs further validation 
from experiments. Figure 13 shows the stability envelopes for 
free convective flow over the wall heater at two x locations, 
when Pr = i and Re2 = 0. 

When Fr=  10, free convective phenomena exhibit instability 
in much the same way as for Pr = 1. However, for Re2 = 20, the 
critical Rayleigh number becomes far too high to be realized in 
practice. This, marked ov in Table 2, means the flow cannot be 
destabilized by means of heating alone. The only instability that 
can occur in a case like this is the viscous shear type, as discussed 
in case 1. 

The problem of onset of instability considered in this work 
has implications in engineering practice. These points of 
transition indicate an increase in complexity of the flow pattern, 
resulting in both an i6crease in pressure drop and heat transfer 
rates. Study of stratified flow (Figure la) shows that a stable 
temperature gradient increases the critical Reynolds number, 
thus delaying the point at which the hot and cold streams start 

C o n c l u s i o n s  

The hydrodynamic and thermal stability of a flow field have 
been studied at both limits of small buoyancy effect on forced 
flow and small superimposed flow on strong buoyant 
convection. The eigenvalue problem resulting from linear 
analysis has been solved by a numerical scheme general enough 
to handle a wide range of parameters, such as Re, Pr, and Ri, 
and also a variety of base flow profiles. Results show that in 
weak mixed convection problems, the ability of stratification to 
promote or suppress instability depends on the Prandtl number. 
At values of Pr>~10, this influence is seen as negligible, 
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Figure 13 Stability envelope for free convection over a partially 
heated wall 
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increasing as Pr is reduced. This trend of thermal effects 
becoming secondary as Pr is raised is also observed at the other 
extreme of onset of convection in a bottom heated channel, in 
the presence of forced flow. However, flow generated by 
buoyancy shows only a small stability dependence on Pr (Ra c 
being close to 3.5 E+05). The response of this flow system 
reverts rapidly to that of channel flow, even at low Reynolds 
numbers (~ 20), and for Pr=  10, the possibility of thermal 
stability is eliminated (Rac--,oo). 
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